A Weak Ergodic Theorem for Infinite Products of Lipschitzian Mappings

نویسندگان

  • SIMEON REICH
  • ALEXANDER J. ZASLAVSKI
چکیده

Let K be a bounded, closed, and convex subset of a Banach space. For a Lipschitzian self-mapping A of K , we denote by Lip(A) its Lipschitz constant. In this paper, we establish a convergence property of infinite products of Lipschitzian self-mappings of K . We consider the set of all sequences {At}t=1 of such selfmappings with the property limsupt→∞ Lip(At) ≤ 1. Endowing it with an appropriate topology, we establish a weak ergodic theorem for the infinite products corresponding to generic sequences in this space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence results for fixed points of nearly weak uniformly L-Lipschitzian mappings of I-Dominated mappings

In this paper, we prove strong convergence results for a modified Mann iterative process for a new class of I- nearly weak uniformly L-Lipschitzian mappings in a real Banach space. The class of I-nearly weak uniformly L-Lipschitzian mappings is an interesting generalization of the class of nearly weak uniformly L-Lipschitzian mappings which inturn is a generalization of the class of nearly unif...

متن کامل

Iterative methods for finding nearest common fixed points of a countable family of quasi-Lipschitzian mappings

We prove a strong convergence result for a sequence generated by Halpern's type iteration for approximating a common fixed point of a countable family of quasi-Lipschitzian mappings in a real Hilbert space. Consequently, we apply our results to the problem of finding a common fixed point of asymptotically nonexpansive mappings, an equilibrium problem, and a variational inequality problem for co...

متن کامل

On the Strong Ergodic Theorem for Commutative Semigroups of Non-lipschitzian Mappings in Banach Spaces

Let C be a bounded closed convex subset of a uniformly convex Banach space X and let = = {T (t) : t ∈ G} be a commutative semigroup of asymptotically nonexpansive in the intermediate mapping from C into itself. In this paper, we provide the strong mean ergodic convergence theorem for the almost-orbit of =.

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003